קורס azure

Microsoft Azure AI Fundamentals Course

AI-900T00-AC

carmel-website
carmel website
carmel-website
carmel-website

About this course

This course introduces fundamentals concepts related to artificial intelligence (AI), and the services in Microsoft Azure that can be used to create AI solutions. The course is not designed to teach students to become professional data scientists or software developers, but rather to build awareness of common AI workloads and the ability to identify Azure services to support them. The course is designed as a blended learning experience that combines instructor-led training with online materials on the Microsoft Learn platform (https://azure.com/learn). The hands-on exercises in the course are based on Learn modules, and students are encouraged to use the content on Learn as reference materials to reinforce what they learn in the class and to explore topics in more depth.

Audience Profile

The Azure AI Fundamentals course is designed for anyone interested in learning about the types of solution artificial intelligence (AI) makes possible, and the services on Microsoft Azure that you can use to create them. You don’t need to have any experience of using Microsoft Azure before taking this course, but a basic level of familiarity with computer technology and the Internet is assumed. Some of the concepts covered in the course require a basic understanding of mathematics, such as the ability to interpret charts. The course includes hands-on activities that involve working with data and running code, so a knowledge of fundamental programming principles will be helpful.

At Course Completion

After completing this course, you will be able to:

·        Describe Artificial Intelligence workloads and considerations

·        Describe fundamental principles of machine learning on Azure

·        Describe features of computer vision workloads on Azure

·        Describe features of Natural Language Processing (NLP) workloads on Azure

·        Describe features of conversational AI workloads on Azure

Course Outline

Module 1: Get started with AI on Azure                                                                                                            

With AI, we can build solutions that seemed like science fiction a short time ago; enabling incredible advances in health care, financial management, environmental protection, and other areas to make a better world for everyone.

Lesson

  • Introduction to AI
  • Understanding Machine Learning
  • Understanding anomaly detection
  • Understanding computer vision
  • Understanding natural language processing
  • Understanding knowledge mining
  • Challenges and risks with AI

Learning objectives

In this module, you’ll learn about the kinds of solution AI can make possible and considerations for responsible AI practices.

Module 2: Use Automated Machine Learning in Azure Machine Learning                                                

Training a machine learning model is an iterative process that requires time and compute resources. Automated machine learning can help make it easier.

Lesson

  • Introduction to Machine Learning
  • Azure Machine Learning
  • Understanding the AutoML process
  • Exercise – Explore Automated Machine Learning in Azure ML

Learning objectives

Learn how to use the automated machine learning user interface in Azure Machine Learning

Module 3: Create a regression model with Azure Machine Learning designer                                         

Regression is a supervised machine learning technique used to predict numeric values. Learn how to create regression models using Azure Machine Learning designer.

 Lesson

  • Identify regression machine learning scenarios.
  • Repetition on Azure Machine Learning
  • Understanding steps for regression
  • Exercise – Explore regression with Azure Machine Learning designer.

Learning objectives                                                                                                                                                 

Learn how to train and publish a regression model with Azure Machine Learning designer.

Module 4: Create a classification model with Azure Machine Learning designer                                    

Classification is a supervised machine learning technique used to predict categories or classes. Learn how to create classification models using Azure Machine Learning designer.

Lesson

  • Identify classification machine learning scenarios
  • Repetition on Azure Machine Learning
  • Understand steps for classification
  • Exercise – Explore classification with Azure Machine Learning designer

Module 5: Create a clustering model with Azure Machine Learning designer

 Clustering is an unsupervised machine learning technique used to group similar entities based on their features. Learn how to create clustering models using Azure Machine Learning designer.

 Lesson

  • Identify clustering machine learning scenarios
  • Repetition on Azure Machine Learning
  • Understand steps for clustering
  • Exercise – Explore clustering with Azure Machine Learning designer

Learning objectives

Train and publish a clustering model with Azure Machine Learning designer

 

Module 6: Analyze images with the Computer Vision service            

The Computer Vision service enables software engineers to create intelligent solutions that extract information from images; a common task in many artificial intelligence (AI) scenarios.

 Lesson

  • Get started with image analysis on Azure
  • Exercise – Explore Computer Vision

Learning objectives

Learn how to use the Computer Vision cognitive service to analyze images.

Module 7: Classify images with the Custom Vision service                                                                        

Image classification is a common workload in artificial intelligence (AI) applications. It harnesses the predictive power of machine learning to enable AI systems to identify real-world items based on images.

 Lesson

  • Understanding classification
  • Get started with image classification on Azure
  • Exercise – Explore image classification

Learning objectives

Learn how to use the Custom Vision service to create an image classification solution.

Module 8: Detect objects in images with the Custom Vision service                                                          

Object detection is a form of computer vision in which artificial intelligence (AI) agents can identify and locate specific types of object in an image or camera feed.

 Lesson

  • What is object detection?
  • Get started with object detection on Azure
  • Exercise – Explore object detection

Learning objectives

Learn how to use the Custom Vision service to create an object detection solution.

Module 9: Detect and analyse faces with the Face service                                                                            

Face detection, analysis, and recognition are important capabilities for artificial intelligence (AI) solutions. The Face cognitive service in Azure makes it easy integrate these capabilities into your applications.

 Lesson

  • Get started with Face analysis on Azure
  • Exercise – Explore face detection

Learning objectives

Learn how to use the Face cognitive service to detect and analyze faces in images.

Module 10: Read text with the Computer Vision service                                                                              

Optical character recognition (OCR) enables artificial intelligence (AI) systems to read text in images, enabling applications to extract information from photographs, scanned documents, and other sources of digitized text.

 Lesson

  • Get started with read API on Azure
  • Exercise – Explore optical character recognition with the Read API

Learning objectives

Learn how to read text in images with the Computer Vision service

Module 11: Analyze receipts with the Form Recognizer service                                                                  

 Processing invoices and receipts is a common task in many business scenarios. Increasingly, organizations are turning to artificial intelligence (AI) to automate data extraction from scanned receipts.

 Lesson

  • Get started with receipt analysis on Azure
  • Exercise – Explore form recognition

Learning objectives

Learn how to use the built-in receipt processing capabilities of the Form Recognizer service

Module 12: Analyze text with the Language service                                                                                       

Explore text mining and text analysis with the Language service’s Natural Language Processing (NLP) features, which include sentiment analysis, key phrase extraction, named entity recognition, and language detection.

 Lesson

  • Get started with text analysis
  • Exercise – Explore text analytics

Learning objectives

Learn how to use the Language service for text analysis

Module 13: Recognize and synthesize speech                                                                                                  

Learn how to recognize and synthesize speech by using Azure Cognitive Services.

 Lesson

  • Get started with Speech on Azure
  • Exercise – Explore speech

Learning objectives

In this module you will:

  • Learn about speech recognition and synthesis
  • Learn how to use the Speech cognitive service in Azure

Module 14: Translate text and speech                                                                                                               

Automated translation capabilities in an AI solution enable closer collaboration by removing language barriers.

 Lesson

  • Get started with translation in Azure
  • Exercise – Explore translation

Learning objectives

After completing this module, you will be able to perform text and speech translation using Azure Cognitive Services.

Module 15: Create a language model with Conversational Language Understanding                            

In this module, we’ll introduce you to Conversational Language Understanding, and show how to create applications that understand language. Lesson

  • Getting started with Conversational Language Understanding
  • Exercise – Explore language understanding

Learning objectives

In this module, you’ll:

  • Learn what Conversational Language Understanding is.
  • Learn about key features, such as intents and utterances.
  • Build and publish a natural-language machine-learning model.

Module 16: Build a bot with the Language Service and Azure Bot Service                                                

Bots are a popular way to provide support through multiple communication channels. This module describes how to use a knowledge base and Azure Bot Service to create a bot that answers user questions.

Lesson

  • Get Started with the language service and Azure Bot service.
  • Exercise – Explore question answering

Learning objectives

After completing this module, you’ll be able to create a knowledge base with an Azure Bot Service bot.

Prerequisites

Prerequisite certification is not required before taking this course. Successful Azure AI Fundamental students start with some basic awareness of computing and internet concepts, and an interest in using Azure AI services.

Specifically:

  • Experience using computers and the internet.
  • Interest in use cases for AI applications and machine learning models.
  • A willingness to learn through hands-on exploration.

 

Fill in the details and we will get back to you as soon as possible

Why choose Carmel Training?

We offer quality solutions for professional training that save you time and resources, and provide you with the tools to take your skills one step further!

carmel website

leading lecturers

Have training experience
and practical rich

carmel website

coming to you

You determine the location of the course and the date

carmel website

theory and practice

Study materials and laboratories
Microsoft official available in the cloud

carmel website

customized program

Full and personal adjustment to the requirements and needs of the organization

You might also be interested..

Microsoft Azure AI Fundamentals Course

Skip to content