MICROSOFT LOGO
MICROSOFT LOGO
Computer

קורס Implementing a Machine Learning solution with Azure Databricks

DP-3014

אנו חיים בעידן של מידע (DATA), ומי שיודע לאסוף את המידע ולנתח אותו יכול להפיק מכך ערך רב. לכל חברה יש את הדאטה שלה, הנובע מתוך הפעילות שלה ו/או רלוונטי עבורה אך מגיע ממקורות חיצוניים. ולכן ישנו ביקוש רב לאנשי DATA היודעים לעבוד עם מערכות Data Platform.
carmel-website
carmel website
carmel-website
carmel-website

About this course

Azure Databricks is a cloud-scale platform for data analytics and machine learning. Data scientists and machine learning engineers can use Azure Databricks to implement machine learning solutions at scale.

Course Outline

Module 1: Explore Azure Databricks.
• Get started with Azure Databricks.
• Identify Azure Databricks workloads.
• Understand key concepts.
• Exercise – Explore Azure Databricks.
Module 2: Use Apache Spark in Azure Databricks.
• Get to know Spark.
• Create a Spark cluster.
• Use Spark in notebooks.
• Use Spark to work with data files.
• Visualize data.
• Exercise – Use Spark in Azure Databricks.
Module 3: Train a machine learning model in Azure Databricks.
• Understand principles of machine learning.
• Machine learning in Azure Databricks.
• Prepare data for machine learning.
• Train a machine learning model.
• Evaluate a machine learning model.
• Exercise – Train a machine learning model in Azure Databricks.
Module 4: Use MLflow in Azure Databricks.
• Capabilities of MLflow.
• Run experiments with MLflow.
• Register and serve models with MLflow.
• Exercise – Use MLflow in Azure Databricks.
Module 5: Tune hyperparameters in Azure Databricks.
• Optimize hyperparameters with Hyperopt.
• Review Hyperopt trials.
• Scale Hyperopt trials.
• Exercise – Optimize hyperparameters for machine learning in Azure Databricks.
Module 6: Use AutoML in Azure Databricks.
• What is AutoML.
• Use AutoML in the Azure Databricks user interface.
• Use code to run an AutoML experiment.
• Exercise – Use AutoML in Azure Databricks.
Module 7: Train deep learning models in Azure Databricks.
• Understand deep learning concepts.
• Train models with PyTorch.
• Distribute PyTorch training with Horovod.
• Exercise – Train deep learning models on Azure Databricks.

Prerequisites

Experience of using Python to explore data and train machine learning models with common open-source frameworks, like Scikit-Learn, PyTorch, and TensorFlow.

אנו חיים בעידן של מידע (DATA), ומי שיודע לאסוף את המידע ולנתח אותו יכול להפיק מכך ערך רב.

לכל חברה יש את הדאטה שלה, הנובע מתוך הפעילות שלה ו/או רלוונטי עבורה אך מגיע ממקורות חיצוניים. ולכן ישנו ביקוש רב לאנשי DATA היודעים לעבוד עם מערכות Data Platform.

היתרונות של Data Platform

ל-Data Platform יתרונות רבים הכוללים:

ניהול משופר של מידע – המערכת מאפשרת לנהל כמויות של מידע בצורה מרוכזת, ומעניקה שליטה על המידע, איכות ועקביות המאפשרים לארגון לעשות שימוש טוב יותר בנכסי המידע.

שיפור קבלת ההחלטות – שילוב הכלים האנליטיים והפקת דוחות מאפשר לארגון לקבל החלטות המבוססות על מידע. כך הארגון יכול להגיב מהר יותר לשינויים בשוק והצרכים של הלקוחות.

שיפור היעילות – ארגונים משקיעים משאבים רבים בהתמודדות עם המידע. Data Platform מאפשרת לייעל את התהליך ולהישען על אוטומציה. זה חוסך בזמן עבודה ואף מקטין טעויות.

מידע בזמן אמת – היכולת לעבד מידע ולנתח אותו בזמן אמת מעניקה לארגון יתרון עצום,  ומאפשרת להגיב ולפעול לפני המתחרים.

גמישות – לכל ארגון צרכים אחרים ושונים. ואחד היתרונות של המערכת הוא הגמישות הגדולה. Data Platform מעניקה כלים רבים, היכולים להתאים למגוון של צרכים.

סוגי Data Platform

ניתן לסווג את פלטפורמות הדאטה לכמה סוגים :

מחסני נתונים (Data warehouses) – מערכות שעיקר יעודן הוא אחסון נתונים מובנים בפורמט מאורגן המאפשר שאילתות מהירות.

אגמי נתונים (Data lakes) – פלטפורמות המאפשרות לאחסן נתונים גולמיים, מובנים או לא מובנים. אלו מתאימים עבור למידת מכונה.

פלטפורמות ענן (Cloud-based data platforms) – פלטפורמות היושבות על ענן, וכך יכולות להעניק לארגון מדרגיות (scalability), גמישות, יעילות ועלות משתלמת. למשל שירותי Microsoft Azure הם דוגמה לפלטפורמת דאטה בענן.

מערכות היברידיות (Hybrid data platforms)  – פלטפורמות דאטה המשלבות סביבה מקומית סביבת הענן. בדרך כלל מערכות שכאלו נדרשות כאשר ישנן דרישות רגולטוריות לגבי המידע.

מערכות בזמן אמת – מערכות המעבדות מידע בזמן אמת ומגיבות. למשל בנקים וחברות אשראי זקוקות למערכות שכאלו על מנת למנוע הונאות ולאפשר פעולות בנקאיות.

אחסון ועיבוד מידע ב-Data Platform

אחסון ועיבוד מידע הוא עולם ומלואו של כלים העונים על צרכים שונים של הארגון והם כוללים: שליטה וניהול המידע, איכות המידע, אבטחה ופרטיות, המחשה, שיתוף ואוטומציה.

למשל שליטה על מחזור החיים של המידע עד למחיקתו. כלים לזיהוי טעויות ואבטחת דיוק במידע, כלים המאפשרים להמחיש את התובנות של המידע ועוד.

שאלות על Data Platform

מה זה Data Platform? 

Data Platform היא מערכת מאוחדת המאפשרת לטפל ולנתח בצורה יעילה כמויות נתונים גדולים. זוהי מערכת רב רכיבית המאפשרת לטיפל בנתונים מובנים ולא מובנים, ולהפוך את המידע לנגיש עבור אפליקציות שונות.

איך לבחור קורס Data Platform?

מומלץ לבחור קורס המותאם אישית לצרכים הארגונים, ומועבר על ידי מרצים בעלי ניסיון מעשי בתחום.

מלאו פרטים ונחזור אליכם בהקדם

קורסים נוספים

למה לבחור בכרמל הדרכה?

אנחנו מציעים פתרונות איכותיים להדרכות מקצועיות שחוסכות לכם זמן ומשאבים, ומספקים לכם את הכלים לקחת את הכישורים שלכם עוד צעד קדימה!
carmel website

מרצים מובילים

בעלי ניסיון הדרכתי
ומעשי עשיר

carmel website

מגיעים אליכם

אתם קובעים את
מיקום הקורס והמועד

carmel website

תאוריה ותרגול

חומרי לימוד ומעבדות
רשמיות של מיקרוסופט הזמינים בענן

carmel website

תוכנית מותאמת

התאמה מלאה ואישית
לדרישות ולצרכי הארגון

פוסטים נוספים

מתחיל ב-03.02.2025

2 מפגשים

10:00-17:00
דילוג לתוכן